判断回文链表

我们之前有两篇文章写了回文串和回文序列相关的问题。

寻找回文串的核心思想是从中心向两端扩展:

  1. string palindrome(string& s, int l, int r) {
  2. // 防止索引越界
  3. while (l >= 0 && r < s.size()
  4. && s[l] == s[r]) {
  5. // 向两边展开
  6. l--; r++;
  7. }
  8. // 返回以 s[l] 和 s[r] 为中心的最长回文串
  9. return s.substr(l + 1, r - l - 1);
  10. }

因为回文串长度可能为奇数也可能是偶数,长度为奇数时只存在一个中心点,而长度为偶数时存在两个中心点,所以上面这个函数需要传入lr

判断一个字符串是不是回文串就简单很多,不需要考虑奇偶情况,只需要「双指针技巧」,从两端向中间逼近即可:

  1. bool isPalindrome(string s) {
  2. int left = 0, right = s.length - 1;
  3. while (left < right) {
  4. if (s[left] != s[right])
  5. return false;
  6. left++; right--;
  7. }
  8. return true;
  9. }

以上代码很好理解吧,因为回文串是对称的,所以正着读和倒着读应该是一样的,这一特点是解决回文串问题的关键

下面扩展这一最简单的情况,来解决:如何判断一个「单链表」是不是回文。

一、判断回文单链表

输入一个单链表的头结点,判断这个链表中的数字是不是回文:

  1. /**
  2. * 单链表节点的定义:
  3. * public class ListNode {
  4. * int val;
  5. * ListNode next;
  6. * }
  7. */
  8. boolean isPalindrome(ListNode head);
  9. 输入: 1->2->null
  10. 输出: false
  11. 输入: 1->2->2->1->null
  12. 输出: true

这道题的关键在于,单链表无法倒着遍历,无法使用双指针技巧。那么最简单的办法就是,把原始链表反转存入一条新的链表,然后比较这两条链表是否相同。关于如何反转链表,可以参见前文「递归操作链表」。

其实,借助二叉树后序遍历的思路,不需要显式反转原始链表也可以倒序遍历链表,下面来具体聊聊。

对于二叉树的几种遍历方式,我们再熟悉不过了:

  1. void traverse(TreeNode root) {
  2. // 前序遍历代码
  3. traverse(root.left);
  4. // 中序遍历代码
  5. traverse(root.right);
  6. // 后序遍历代码
  7. }

在「学习数据结构的框架思维」中说过,链表兼具递归结构,树结构不过是链表的衍生。那么,链表其实也可以有前序遍历和后序遍历

  1. void traverse(ListNode head) {
  2. // 前序遍历代码
  3. traverse(head.next);
  4. // 后序遍历代码
  5. }

这个框架有什么指导意义呢?如果我想正序打印链表中的val值,可以在前序遍历位置写代码;反之,如果想倒序遍历链表,就可以在后序遍历位置操作:

  1. /* 倒序打印单链表中的元素值 */
  2. void traverse(ListNode head) {
  3. if (head == null) return;
  4. traverse(head.next);
  5. // 后序遍历代码
  6. print(head.val);
  7. }

说到这了,其实可以稍作修改,模仿双指针实现回文判断的功能:

  1. // 左侧指针
  2. ListNode left;
  3. boolean isPalindrome(ListNode head) {
  4. left = head;
  5. return traverse(head);
  6. }
  7. boolean traverse(ListNode right) {
  8. if (right == null) return true;
  9. boolean res = traverse(right.next);
  10. // 后序遍历代码
  11. res = res && (right.val == left.val);
  12. left = left.next;
  13. return res;
  14. }

这么做的核心逻辑是什么呢?实际上就是把链表节点放入一个栈,然后再拿出来,这时候元素顺序就是反的,只不过我们利用的是递归函数的堆栈而已。

判断回文链表 - 图1

当然,无论造一条反转链表还是利用后续遍历,算法的时间和空间复杂度都是 O(N)。下面我们想想,能不能不用额外的空间,解决这个问题呢?

二、优化空间复杂度

更好的思路是这样的:

1、先通过「双指针技巧」中的快慢指针来找到链表的中点

  1. ListNode slow, fast;
  2. slow = fast = head;
  3. while (fast != null && fast.next != null) {
  4. slow = slow.next;
  5. fast = fast.next.next;
  6. }
  7. // slow 指针现在指向链表中点

判断回文链表 - 图2

2、如果fast指针没有指向null,说明链表长度为奇数,slow还要再前进一步

  1. if (fast != null)
  2. slow = slow.next;

判断回文链表 - 图3

3、从slow开始反转后面的链表,现在就可以开始比较回文串了

  1. ListNode left = head;
  2. ListNode right = reverse(slow);
  3. while (right != null) {
  4. if (left.val != right.val)
  5. return false;
  6. left = left.next;
  7. right = right.next;
  8. }
  9. return true;

判断回文链表 - 图4

至此,把上面 3 段代码合在一起就高效地解决这个问题了,其中reverse函数很容易实现:

  1. ListNode reverse(ListNode head) {
  2. ListNode pre = null, cur = head;
  3. while (cur != null) {
  4. ListNode next = cur.next;
  5. cur.next = pre;
  6. pre = cur;
  7. cur = next;
  8. }
  9. return pre;
  10. }

判断回文链表 - 图5

算法总体的时间复杂度 O(N),空间复杂度 O(1),已经是最优的了。

我知道肯定有读者会问:这种解法虽然高效,但破坏了输入链表的原始结构,能不能避免这个瑕疵呢?

其实这个问题很好解决,关键在于得到p, q这两个指针位置:

判断回文链表 - 图6

这样,只要在函数 return 之前加一段代码即可恢复原先链表顺序:

  1. p.next = reverse(q);

篇幅所限,我就不写了,读者可以自己尝试一下。

三、最后总结

首先,寻找回文串是从中间向两端扩展,判断回文串是从两端向中间收缩。对于单链表,无法直接倒序遍历,可以造一条新的反转链表,可以利用链表的后序遍历,也可以用栈结构倒序处理单链表。

具体到回文链表的判断问题,由于回文的特殊性,可以不完全反转链表,而是仅仅反转部分链表,将空间复杂度降到 O(1)。