R 平均值,中位数和模式

R中的统计分析通过使用许多内置函数来执行。 这些函数大多数是R基础包的一部分。 这些函数将R向量作为输入和参数,并给出结果。

我们在本章中讨论的功能是平均值,中位数和模式。

Mean平均值

通过求出数据集的和再除以求和数的总量得到平均值

函数mean()用于在R语言中计算平均值。

语法

用于计算R中的平均值的基本语法

  1. mean(x, trim = 0, na.rm = FALSE, ...)

以下是所使用的参数的描述

  • x是输入向量。

  • trim用于从排序向量的两端丢弃一些观察结果。

  • na.rm用于从输入向量中删除缺失值。

实例

  1. # Create a vector.
  2. x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
  3. # Find Mean.
  4. result.mean <- mean(x)
  5. print(result.mean)

当我们执行上面的代码,它产生以下结果:

  1. [1] 8.22

应用修剪选项

当提供trim参数时,向量中的值被排序,然后从计算平均值中减去所需的观察值。

当trim = 0.3时,来自每端的3个值将从计算中减去以找到均值。

在这种情况下,排序的向量是(-21,-5,2,3,4.2,7,8,12,18,54),并且从用于计算平均值的向量中移除的值是(-21,-5,2) 从左边和(12,18,54)从右边。

  1. # Create a vector.
  2. x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
  3. # Find Mean.
  4. result.mean <- mean(x,trim = 0.3)
  5. print(result.mean)

当我们执行上面的代码,它产生以下结果:

  1. [1] 5.55

应用NA选项

如果有缺失值,则平均函数返回NA。

要从计算中删除缺少的值,请使用na.rm = TRUE。 这意味着去除NA值。

  1. # Create a vector.
  2. x <- c(12,7,3,4.2,18,2,54,-21,8,-5,NA)
  3. # Find mean.
  4. result.mean <- mean(x)
  5. print(result.mean)
  6. # Find mean dropping NA values.
  7. result.mean <- mean(x,na.rm = TRUE)
  8. print(result.mean)

当我们执行上面的代码,它产生以下结果:

  1. [1] NA
  2. [1] 8.22

Median中位数

数据系列中的最中间值称为中值。 在R语言中使用median()函数来计算此值。

语法

计算R语言中位数的基本语法

  1. median(x, na.rm = FALSE)

以下是所使用的参数的描述

  • x是输入向量。

  • na.rm用于从输入向量中删除缺失值。

实例

  1. # Create the vector.
  2. x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
  3. # Find the median.
  4. median.result <- median(x)
  5. print(median.result)

当我们执行上面的代码,它产生以下结果:

  1. [1] 5.6

Mode模式

模式是一组数据中出现次数最多的值。 Unike平均值和中位数,模式可以同时包含数字和字符数据。

R语言没有标准的内置函数来计算模式。 因此,我们创建一个用户函数来计算R语言中的数据集的模式。该函数将向量作为输入,并将模式值作为输出。

实例

  1. # Create the function.
  2. getmode <- function(v) {
  3. uniqv <- unique(v)
  4. uniqv[which.max(tabulate(match(v, uniqv)))]
  5. }
  6. # Create the vector with numbers.
  7. v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)
  8. # Calculate the mode using the user function.
  9. result <- getmode(v)
  10. print(result)
  11. # Create the vector with characters.
  12. charv <- c("o","it","the","it","it")
  13. # Calculate the mode using the user function.
  14. result <- getmode(charv)
  15. print(result)

当我们执行上面的代码,它产生以下结果:

  1. [1] 2
  2. [1] "it"