R 数据帧

数据帧是表或二维阵列状结构,其中每一列包含一个变量的值,并且每一行包含来自每一列的一组值。以下是数据帧的特性。

  • 列名称应为非空。
  • 行名称应该是唯一的。
  • 存储在数据帧中的数据可以是数字,因子或字符类型。
  • 每个列应包含相同数量的数据项。

创建数据帧

  1. # Create the data frame.
  2. emp.data <- data.frame(
  3. emp_id = c (1:5),
  4. emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
  5. salary = c(623.3,515.2,611.0,729.0,843.25),
  6. start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
  7. "2015-03-27")),
  8. stringsAsFactors = FALSE
  9. )
  10. # Print the data frame.
  11. print(emp.data)

当我们执行上面的代码,它产生以下结果:

  1. emp_id emp_name salary start_date
  2. 1 1 Rick 623.30 2012-01-01
  3. 2 2 Dan 515.20 2013-09-23
  4. 3 3 Michelle 611.00 2014-11-15
  5. 4 4 Ryan 729.00 2014-05-11
  6. 5 5 Gary 843.25 2015-03-27

获取数据帧的结构

通过使用str()函数可以看到数据帧的结构。

  1. # Create the data frame.
  2. emp.data <- data.frame(
  3. emp_id = c (1:5),
  4. emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
  5. salary = c(623.3,515.2,611.0,729.0,843.25),
  6. start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
  7. "2015-03-27")),
  8. stringsAsFactors = FALSE
  9. )
  10. # Get the structure of the data frame.
  11. str(emp.data)

当我们执行上面的代码,它产生以下结果:

  1. 'data.frame': 5 obs. of 4 variables:
  2. $ emp_id : int 1 2 3 4 5
  3. $ emp_name : chr "Rick" "Dan" "Michelle" "Ryan" ...
  4. $ salary : num 623 515 611 729 843
  5. $ start_date: Date, format: "2012-01-01" "2013-09-23" "2014-11-15" "2014-05-11" ...

数据框中的数据摘要

可以通过应用summary()函数获取数据的统计摘要和性质。

  1. # Create the data frame.
  2. emp.data <- data.frame(
  3. emp_id = c (1:5),
  4. emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
  5. salary = c(623.3,515.2,611.0,729.0,843.25),
  6. start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
  7. "2015-03-27")),
  8. stringsAsFactors = FALSE
  9. )
  10. # Print the summary.
  11. print(summary(emp.data))

当我们执行上面的代码,它产生以下结果:

  1. emp_id emp_name salary start_date
  2. Min. :1 Length:5 Min. :515.2 Min. :2012-01-01
  3. 1st Qu.:2 Class :character 1st Qu.:611.0 1st Qu.:2013-09-23
  4. Median :3 Mode :character Median :623.3 Median :2014-05-11
  5. Mean :3 Mean :664.4 Mean :2014-01-14
  6. 3rd Qu.:4 3rd Qu.:729.0 3rd Qu.:2014-11-15
  7. Max. :5 Max. :843.2 Max. :2015-03-27

从数据帧提取数据

使用列名称从数据框中提取特定列。

  1. # Create the data frame.
  2. emp.data <- data.frame(
  3. emp_id = c (1:5),
  4. emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
  5. salary = c(623.3,515.2,611.0,729.0,843.25),
  6. start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11",
  7. "2015-03-27")),
  8. stringsAsFactors = FALSE
  9. )
  10. # Extract Specific columns.
  11. result <- data.frame(emp.data$emp_name,emp.data$salary)
  12. print(result)

当我们执行上面的代码,它产生以下结果:

  1. emp.data.emp_name emp.data.salary
  2. 1 Rick 623.30
  3. 2 Dan 515.20
  4. 3 Michelle 611.00
  5. 4 Ryan 729.00
  6. 5 Gary 843.25

先提取前两行,然后提取所有列

  1. # Create the data frame.
  2. emp.data <- data.frame(
  3. emp_id = c (1:5),
  4. emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
  5. salary = c(623.3,515.2,611.0,729.0,843.25),
  6. start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
  7. "2015-03-27")),
  8. stringsAsFactors = FALSE
  9. )
  10. # Extract first two rows.
  11. result <- emp.data[1:2,]
  12. print(result)

当我们执行上面的代码,它产生以下结果:

  1. emp_id emp_name salary start_date
  2. 1 1 Rick 623.3 2012-01-01
  3. 2 2 Dan 515.2 2013-09-23

用第2和第4列提取第3和第5行

  1. # Create the data frame.
  2. emp.data <- data.frame(
  3. emp_id = c (1:5),
  4. emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
  5. salary = c(623.3,515.2,611.0,729.0,843.25),
  6. start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
  7. "2015-03-27")),
  8. stringsAsFactors = FALSE
  9. )
  10. # Extract 3rd and 5th row with 2nd and 4th column.
  11. result <- emp.data[c(3,5),c(2,4)]
  12. print(result)

当我们执行上面的代码,它产生以下结果:

  1. emp_name start_date
  2. 3 Michelle 2014-11-15
  3. 5 Gary 2015-03-27

扩展数据帧

可以通过添加列和行来扩展数据帧。

添加列

只需使用新的列名称添加列向量。

  1. # Create the data frame.
  2. emp.data <- data.frame(
  3. emp_id = c (1:5),
  4. emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
  5. salary = c(623.3,515.2,611.0,729.0,843.25),
  6. start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
  7. "2015-03-27")),
  8. stringsAsFactors = FALSE
  9. )
  10. # Add the "dept" coulmn.
  11. emp.data$dept <- c("IT","Operations","IT","HR","Finance")
  12. v <- emp.data
  13. print(v)

当我们执行上面的代码,它产生以下结果:

  1. emp_id emp_name salary start_date dept
  2. 1 1 Rick 623.30 2012-01-01 IT
  3. 2 2 Dan 515.20 2013-09-23 Operations
  4. 3 3 Michelle 611.00 2014-11-15 IT
  5. 4 4 Ryan 729.00 2014-05-11 HR
  6. 5 5 Gary 843.25 2015-03-27 Finance

添加行

要将更多行永久添加到现有数据帧,我们需要引入与现有数据帧相同结构的新行,并使用rbind()函数。在下面的示例中,我们创建一个包含新行的数据帧,并将其与现有数据帧合并以创建最终数据帧。

  1. # Create the first data frame.
  2. emp.data <- data.frame(
  3. emp_id = c (1:5),
  4. emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
  5. salary = c(623.3,515.2,611.0,729.0,843.25),
  6. start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
  7. "2015-03-27")),
  8. dept = c("IT","Operations","IT","HR","Finance"),
  9. stringsAsFactors = FALSE
  10. )
  11. # Create the second data frame
  12. emp.newdata <- data.frame(
  13. emp_id = c (6:8),
  14. emp_name = c("Rasmi","Pranab","Tusar"),
  15. salary = c(578.0,722.5,632.8),
  16. start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")),
  17. dept = c("IT","Operations","Fianance"),
  18. stringsAsFactors = FALSE
  19. )
  20. # Bind the two data frames.
  21. emp.finaldata <- rbind(emp.data,emp.newdata)
  22. print(emp.finaldata)

当我们执行上面的代码,它产生以下结果:

  1. emp_id emp_name salary start_date dept
  2. 1 1 Rick 623.30 2012-01-01 IT
  3. 2 2 Dan 515.20 2013-09-23 Operations
  4. 3 3 Michelle 611.00 2014-11-15 IT
  5. 4 4 Ryan 729.00 2014-05-11 HR
  6. 5 5 Gary 843.25 2015-03-27 Finance
  7. 6 6 Rasmi 578.00 2013-05-21 IT
  8. 7 7 Pranab 722.50 2013-07-30 Operations
  9. 8 8 Tusar 632.80 2014-06-17 Fianance