最后的修改
让我们回到话题的原点,在进入新话题之前,对我们的示例做最后一个修改,为每个汽车生成商计算最低和最高的价格:
GET /cars/transactions/_search
{
"size" : 0,
"aggs": {
"colors": {
"terms": {
"field": "color"
},
"aggs": {
"avg_price": { "avg": { "field": "price" }
},
"make" : {
"terms" : {
"field" : "make"
},
"aggs" : { (1)
"min_price" : { "min": { "field": "price"} }, (2)
"max_price" : { "max": { "field": "price"} } (3)
}
}
}
}
}
}
<1> 我们需要增加另外一个嵌套的 aggs
层级。
<2> 然后包括 min
最小度量。
<3> 以及 max
最大度量。
得到以下输出(只显示部分结果):
{
...
"aggregations": {
"colors": {
"buckets": [
{
"key": "red",
"doc_count": 4,
"make": {
"buckets": [
{
"key": "honda",
"doc_count": 3,
"min_price": {
"value": 10000 (1)
},
"max_price": {
"value": 20000 (1)
}
},
{
"key": "bmw",
"doc_count": 1,
"min_price": {
"value": 80000
},
"max_price": {
"value": 80000
}
}
]
},
"avg_price": {
"value": 32500
}
},
...
<1> min
和 max
度量现在出现在每个汽车制造商( make
)下面。
有了这两个桶,我们可以对查询的结果进行扩展并得到以下信息:
- 有四辆红色车。
- 红色车的平均售价是 $32,500 美元。
- 其中三辆红色车是 Honda 本田制造,一辆是 BMW 宝马制造。
- 最便宜的红色本田售价为 $10,000 美元。
- 最贵的红色本田售价为 $20,000 美元。