高阶概念
类似于 DSL 查询表达式,聚合也有 可组合 的语法:独立单元的功能可以被混合起来提供你需要的自定义行为。这意味着只需要学习很少的基本概念,就可以得到几乎无尽的组合。
要掌握聚合,你只需要明白两个主要的概念:
桶(Buckets) :: 满足特定条件的文档的集合
指标(Metrics) :: 对桶内的文档进行统计计算
这就是全部了!每个聚合都是一个或者多个桶和零个或者多个指标的组合。翻译成粗略的SQL语句来解释吧:
SELECT COUNT(color) (1)
FROM table
GROUP BY color (2)
<1> COUNT(color)
相当于指标。
<2> GROUP BY color
相当于桶。
桶在概念上类似于 SQL 的分组(GROUP BY),而指标则类似于 COUNT()
、 SUM()
、 MAX()
等统计方法。
让我们深入这两个概念并且了解和这两个概念相关的东西。
桶
桶 简单来说就是满足特定条件的文档的集合:
一个雇员属于 男性 桶或者 女性 桶
奥尔巴尼属于 纽约 桶
日期2014-10-28属于 十月 桶
当聚合开始被执行,每个文档里面的值通过计算来决定符合哪个桶的条件。如果匹配到,文档将放入相应的桶并接着进行聚合操作。
桶也可以被嵌套在其他桶里面,提供层次化的或者有条件的划分方案。例如,辛辛那提会被放入俄亥俄州这个桶,而 整个 俄亥俄州桶会被放入美国这个桶。
Elasticsearch 有很多种类型的桶,能让你通过很多种方式来划分文档(时间、最受欢迎的词、年龄区间、地理位置等等)。其实根本上都是通过同样的原理进行操作:基于条件来划分文档。
指标
桶能让我们划分文档到有意义的集合,(((“aggregations”, “high-level concepts”, “metrics”)))(((“metrics”)))但是最终我们需要的是对这些桶内的文档进行一些指标的计算。分桶是一种达到目的的手段:它提供了一种给文档分组的方法来让我们可以计算感兴趣的指标。
大多数 指标 是简单的数学运算(例如最小值、平均值、最大值,还有汇总),这些是通过文档的值来计算。在实践中,指标能让你计算像平均薪资、最高出售价格、95%的查询延迟这样的数据。
桶和指标的组合
聚合 是由桶和指标组成的。聚合可能只有一个桶,可能只有一个指标,或者可能两个都有。也有可能有一些桶嵌套在其他桶里面。例如,我们可以通过所属国家来划分文档(桶),然后计算每个国家的平均薪酬(指标)。
由于桶可以被嵌套,我们可以实现非常多并且非常复杂的聚合:
1.通过国家划分文档(桶)
2.然后通过性别划分每个国家(桶)
3.然后通过年龄区间划分每种性别(桶)
4.最后,为每个年龄区间计算平均薪酬(指标)
最后将告诉你每个 <国家, 性别, 年龄>
组合的平均薪酬。所有的这些都在一个请求内完成并且只遍历一次数据!